Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Chen, D (Ed.)One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            This paper presents the theoretical foundation, practical implementation, and empirical evaluation of a glove for interaction with 3-D virtual environments. At the dawn of the “Spatial Computing Era”, where users continuously interact with 3-D Virtual and Augmented Reality environments, the need for a practical and intuitive interaction system that can efficiently engage 3-D elements is becoming pressing. Over the last few decades, there have been attempts to provide such an interaction mechanism using a glove. However, glove systems are currently not in widespread use due to their high cost and, we propose, due to their inability to sustain high levels of performance under certain situations. Performance deterioration has been observed due to the distortion of the local magnetic field caused by ordinary ferromagnetic objects present near the glove’s operating space. There are several areas where reliable hand-tracking gloves could provide a next generation of improved solutions, such as American Sign Language training and automatic translation to text and training and evaluation for activities that require high motor skills in the hands (e.g., playing some musical instruments, training of surgeons, etc.). While the use of a hand-tracking glove toward these goals seems intuitive, some of the currently available glove systems may not meet the accuracy and reliability levels required for those use cases. This paper describes our concept of an interaction glove instrumented with miniature magnetic, angular rate, and gravity (MARG) sensors and aided by a single camera. The camera used is an off-the-shelf red, green, and blue–depth (RGB-D) camera. We describe a proof-of-concept implementation of the system using our custom “GMVDK” orientation estimation algorithm. This paper also describes the glove’s empirical evaluation with human-subject performance tests. The results show that the prototype glove, using the GMVDK algorithm, is able to operate without performance losses, even in magnetically distorted environments.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            BackgroundSemantic intrusion errors (SIEs) are associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). It is unknown whether accounting for maximum learning capacity still leads to an increase in SIEs when elevated plasma p-tau217, a biological indicator of underlying AD, is present. MethodsOne hundred fifty-eight older adult participants completed the Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L), a sensitive cognitive challenge test designed to elicit SIEs. Of these, 108 were clinically diagnosed with amnestic MCI (aMCI). Fifty-eight individuals met or exceeded a plasma p-tau217positivity of >0.55 pg/ml, while 50 individuals scored below this threshold. ResultsAfter adjusting for demographic covariates and maximum learning capacity, the aMCI p-tau217+ group evidenced more SIEs compared to aMCI p-tau217- on the first (list B1;p= 0.035) and second trials of the competing list (list B2;p= 0.006). Biological predictors such asApoEε4 status, higher p-tau217, and older age were predictors of an elevated number of SIEs [list B2:F(3,104) = 10.92;p= 0.001;R= 0.489)]. ConclusionsUnlike previous studies that used amyloid PET or other plasma biomarkers, individuals with aMCI p-tau217+ evidenced more SIEs, even after adjusting for their initial learning capacity, a covariate that has not been studied previously. These findings support that SIEs are more prevalent in the presence of underlying AD pathology and occur independent of learning deficits.more » « lessFree, publicly-accessible full text available July 22, 2026
- 
            While the availability of low-cost micro electro-mechanical systems (MEMS) accelerometers, gyroscopes, and magnetometers initially seemed to promise the possibility of using them to easily track the position and orientation of virtually any object that they could be attached to, this promise has not yet been fulfilled. Navigation-grade accelerometers and gyroscopes have long been the basis for tracking ships and aircraft, but the signals from low-cost MEMS accelerometers and gyroscopes are still orders of magnitude poorer in quality (e.g., bias stability). Therefore, the applications of MEMS inertial measurement units (IMUs), containing tri-axial accelerometers and gyroscopes, are currently not as extensive as they were expected to be. Even the addition of MEMS tri-axial magnetometers, to conform magnetic, angular rate, and gravity (MARG) sensor modules, has not fully overcome the challenges involved in using these modules for long-term orientation estimation, which would be of great benefit for the tracking of human–computer hand-held controllers or tracking of Internet-Of-Things (IoT) devices. Here, we present an algorithm, GMVDμK (or simply GMVDK), that aims at taking full advantage of all the signals available from a MARG module to robustly estimate its orientation, while preventing damaging overcorrections, within the context of a human–computer interaction application. Through experimental comparison, we show that GMVDK is more robust to magnetic disturbances than three other MARG orientation estimation algorithms in representative trials.more » « less
- 
            Extensive prior work has provided methods for the optimization of routing based on the criteria of travel time and/or the cost of travel and/or the distance traveled. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph to find the best route. Some users desire that the routing suggestion include consideration pertaining to the reduction of risk of encountering violent crime. For example, a user desires a leisurely walk via a safe route from her hotel in an unknown city. Here, we present a method to quantify such user preferences and the risks of encountering crime and to augment the standard routing methods by assigning weights to safety considerations. The proposed method’s advantages, in comparison to other crimeavoidance routing algorithms, include weighting crime types with respect to their potential detrimental value to the user, with temporal qualification and quantification of crime and its statistical aggregation at the geographic resolution down to a city block.more » « less
- 
            Neuroimaging and biofluid biomarkers provide a proxy of pathological changes for Alzheimer’s disease (AD) and are useful in improving diagnosis and assessing disease progression. However, it is not clear how race/ethnicity and different prevalence of AD risks impact biomarker levels. In this narrative review, we survey studies focusing on comparing biomarker differences between non-Hispanic White American(s) (NHW), African American(s) (AA), Hispanic/Latino American(s) (HLA), and Asian American(s) with normal cognition, mild cognitive impairment, and dementia. We found no strong evidence of racial and ethnic differences in imaging biomarkers after controlling for cognitive status and cardiovascular risks. For biofluid biomarkers, in AA, higher levels of plasma Aβ42/Aβ40, and lower levels of CSF total tau and p-tau 181, were observed after controlling for APOE status and comorbidities compared to NHW. Examining the impact of AD risks and comorbidities on biomarkers and their contributions to racial/ethnic differences in cognitive impairment are critical to interpreting biomarkers, understanding their generalizability, and eliminating racial/ethnic health disparities.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Objective: This study develops new machine learning architectures that are more adept at detecting interictal epileptiform discharges (IEDs) in scalp EEG. A comparison of results using the average precision (AP) metric is made with the proposed models on two datasets obtained from Baptist Hospital of Miami and Temple University Hospital. Methods: Applying graph neural networks (GNNs) on functional connectivity (FC) maps of different frequency sub-bands to yield a novel architecture we call FC-GNN. Attention mechanism is applied on a complete graph to let the neural network select its important edges, hence bypassing the extraction of features, a model we refer to as CA-GNN. Results: On the Baptist Hospital dataset, the results were as follows: Vanilla Self-Attention → 0.9029 ± 0.0431, Hierarchical Attention → 0.8546 ± 0.0587, Vanilla Visual Geometry Group (VGG) → 0.92 ± 0.0618, Satelight → 0.9219 ± 0.046, FC-GNN → 0.9731 ± 0.0187, and CA-GNN → 0.9788 ± 0.0125. In the same order, the results on the Temple University Hospital dataset are 0.9692, 0.9113, 0.97, 0.9575, 0.963, and 0.9879. Conclusion: Based on the good results they yield, GNNs prove to have a strong potential in detecting epileptogenic activity. Significance: This study opens the door for the discovery of the powerful role played by GNNs in capturing IEDs, which is an essential step for identifying the epileptogenic networks of the affected brain and hence improving the prospects for more accurate 3D source localization.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
